% 마방진 >> A = magic(3) A = 8 1 6 3 5 7 4 9 2 % 역행렬 >> B = inv(A) B = 0.1472 -0.1444 0.0639 -0.0611 0.0222 0.1056 -0.0194 0.1889 -0.1028 >> A*B ans = 1.0000 0 -0.0000 -0.0000 1.0000 0 0.0000 0 1.0000 %Deteminent(?) >> det(A) ans = -360 % Eigen Value >> [V, D] = eig(A) V = -0.5774 -0.8131 -0.3416 -0.5774 0.4714 -0.4714 -0.5774 0.3416 0.8131 D = 15.0000 0 0 0 4.8990 0 0 0 -4.8990 %help comet을 치면 나오는 예제. 애니메이션 그래프가 출력된다. >> t = -pi:pi/200:pi; >> comet(t,tan(sin(t))-sin(tan(t))) >> peaks >> vibes
>> lookfor fourier FFT Discrete Fourier transform. FFT2 Two-dimensional discrete Fourier Transform. FFTN N-dimensional discrete Fourier Transform. IFFT Inverse discrete Fourier transform. IFFT2 Two-dimensional inverse discrete Fourier transform. IFFTN N-dimensional inverse discrete Fourier transform. fi_radix2fft_demo.m: %% Fixed-Point Fast Fourier Transform (FFT) DFTMTX Discrete Fourier transform matrix. SPECGRAM Spectrogram using a Short-Time Fourier Transform (STFT). SPECTROGRAM Spectrogram using a Short-Time Fourier Transform (STFT). FFT Quantized Fast Fourier Transform. FOURIER Fourier integral transform. IFOURIER Inverse Fourier integral transform.
>> help fft FFT Discrete Fourier transform. FFT(X) is the discrete Fourier transform (DFT) of vector X. For matrices, the FFT operation is applied to each column. For N-D arrays, the FFT operation operates on the first non-singleton dimension. FFT(X,N) is the N-point FFT, padded with zeros if X has less than N points and truncated if it has more. FFT(X,[],DIM) or FFT(X,N,DIM) applies the FFT operation across the dimension DIM. For length N input vector x, the DFT is a length N vector X, with elements N X(k) = sum x(n)*exp(-j*2*pi*(k-1)*(n-1)/N), 1 <= k <= N. n=1 The inverse DFT (computed by IFFT) is given by N x(n) = (1/N) sum X(k)*exp( j*2*pi*(k-1)*(n-1)/N), 1 <= n <= N. k=1 See also fft2, fftn, fftshift, fftw, ifft, ifft2, ifftn. Overloaded functions or methods (ones with the same name in other directories) help uint8/fft.m help uint16/fft.m help qfft/fft.m help iddata/fft.m Reference page in Help browser doc fft