% 마방진
>> A = magic(3)
A =
8 1 6
3 5 7
4 9 2
% 역행렬
>> B = inv(A)
B =
0.1472 -0.1444 0.0639
-0.0611 0.0222 0.1056
-0.0194 0.1889 -0.1028
>> A*B
ans =
1.0000 0 -0.0000
-0.0000 1.0000 0
0.0000 0 1.0000
%Deteminent(?)
>> det(A)
ans =
-360
% Eigen Value
>> [V, D] = eig(A)
V =
-0.5774 -0.8131 -0.3416
-0.5774 0.4714 -0.4714
-0.5774 0.3416 0.8131
D =
15.0000 0 0
0 4.8990 0
0 0 -4.8990
%help comet을 치면 나오는 예제. 애니메이션 그래프가 출력된다.
>> t = -pi:pi/200:pi;
>> comet(t,tan(sin(t))-sin(tan(t)))
>> peaks
>> vibes



>> lookfor fourier FFT Discrete Fourier transform. FFT2 Two-dimensional discrete Fourier Transform. FFTN N-dimensional discrete Fourier Transform. IFFT Inverse discrete Fourier transform. IFFT2 Two-dimensional inverse discrete Fourier transform. IFFTN N-dimensional inverse discrete Fourier transform. fi_radix2fft_demo.m: %% Fixed-Point Fast Fourier Transform (FFT) DFTMTX Discrete Fourier transform matrix. SPECGRAM Spectrogram using a Short-Time Fourier Transform (STFT). SPECTROGRAM Spectrogram using a Short-Time Fourier Transform (STFT). FFT Quantized Fast Fourier Transform. FOURIER Fourier integral transform. IFOURIER Inverse Fourier integral transform.
>> help fft
FFT Discrete Fourier transform.
FFT(X) is the discrete Fourier transform (DFT) of vector X. For
matrices, the FFT operation is applied to each column. For N-D
arrays, the FFT operation operates on the first non-singleton
dimension.
FFT(X,N) is the N-point FFT, padded with zeros if X has less
than N points and truncated if it has more.
FFT(X,[],DIM) or FFT(X,N,DIM) applies the FFT operation across the
dimension DIM.
For length N input vector x, the DFT is a length N vector X,
with elements
N
X(k) = sum x(n)*exp(-j*2*pi*(k-1)*(n-1)/N), 1 <= k <= N.
n=1
The inverse DFT (computed by IFFT) is given by
N
x(n) = (1/N) sum X(k)*exp( j*2*pi*(k-1)*(n-1)/N), 1 <= n <= N.
k=1
See also fft2, fftn, fftshift, fftw, ifft, ifft2, ifftn.
Overloaded functions or methods (ones with the same name in other directories)
help uint8/fft.m
help uint16/fft.m
help qfft/fft.m
help iddata/fft.m
Reference page in Help browser
doc fft
